Variation in photosynthetic response to temperature in a guild of winter annual plants.
نویسندگان
چکیده
How species respond to environmental variation can have important consequences for population and community dynamics. Temperature, in particular, is one source of variation expected to strongly influence plant performance. Here, we compared photosynthetic responses to temperature across a guild of winter annual plants. Previous work in this system identified a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) that predicts species differences in population dynamics over time, which then contribute to long-term species coexistence. Interestingly, species with high WUE invest in photosynthetic processes that appear to maximize carbon assimilation, while high-RGR species appear to maximize carbon gain by increasing leaf area for photosynthesis. In high-WUE species, higher rates of carbon acquisition were associated with increased investment into light-driven electron transport (J(max)). We tested whether such allocation allows these plants to have greater photosynthetic performance at lower temperatures by comparing the temperature sensitivity of photosynthesis across species in the community. Six species were grown in buried pots in the field, allowing them to experience natural changes in seasonal temperature. Plants were taken from the field and placed in growth chambers where photosynthetic performance was measured following short-term exposure to a wide range of temperatures. These measurements were repeated throughout the season. Our results suggest that high-WUE species are more efficient at processing incoming light, as measured by chlorophyll fluorescence, and exhibit higher net photosynthetic rates (A(net)) than high-RGR species, and these advantages are greatest at low temperatures. Sampling date differentially affected fluorescence across species, while species had similar seasonal changes in A(net). Our results suggest that species-specific responses to temperature contribute to the WUE-RGR trade-off that has been shown to promote coexistence in this community. These differential responses to environmental conditions can have important effects on fitness, population dynamics, and community structure.
منابع مشابه
Photosynthetic resource-use efficiency and demographic variability in desert winter annual plants.
We studied a guild of desert winter annual plants that differ in long-term variation in per capita reproductive success (lb, the product of per capita survival from germination to reproduction, l, times per capita reproduction of survivors, b) to relate individual function to population and community dynamics. We hypothesized that variation in lb should be related to species' positions along a ...
متن کاملHabitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature
Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and interm...
متن کاملPhotosynthetic temperature responses of co-occurring desert winter annuals with contrasting resource-use efficiencies and different temporal patterns of resource utilization may allow for species coexistence
A mechanistic understanding of population dynamics requires close examination of species’ differences in how physiological traits interact with environmental variation and translate into demographic variation. We focused on two co-occurring winter annual species (Pectocarya recurvata and Plantago insularis) that differ in photosynthetic resource-use efficiency and demographic responses to envir...
متن کاملPhotosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration
Biochemical leaf photosynthesis models are evaluated by laboratory results andhave been widely used at field scale for quantification of plant production,biochemical cycles and land surface processes. It is a key issue to search forappropriate model structure and parameterization, which determine modeluncertainty. A leaf photosynthesis model that couples the Farquhar-vonCaemmerer-Berry (FvCB) f...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 93 12 شماره
صفحات -
تاریخ انتشار 2012